




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2022-2023學年高三上數學期末模擬試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某三棱錐的三視圖如圖所示,網格紙上小正方形的邊長為,則該三棱錐外接球的表面積為()A. B. C. D.2.已知直線與圓有公共點,則的最大值為()A.4 B. C. D.3.已知斜率為k的直線l與拋物線交于A,B兩點,線段AB的中點為,則斜率k的取值范圍是()A. B. C. D.4.已知向量,則()A.∥ B.⊥ C.∥() D.⊥()5.在天文學中,天體的明暗程度可以用星等或亮度來描述.兩顆星的星等與亮度滿足,其中星等為mk的星的亮度為Ek(k=1,2).已知太陽的星等是–26.7,天狼星的星等是–1.45,則太陽與天狼星的亮度的比值為()A.1010.1 B.10.1 C.lg10.1 D.10–10.16.已知函數有兩個不同的極值點,,若不等式有解,則的取值范圍是()A. B.C. D.7.已知i是虛數單位,則1+iiA.-12+32i8.已知函數的部分圖象如圖所示,則()A. B. C. D.9.由實數組成的等比數列{an}的前n項和為Sn,則“a1>0”是“S9>S8”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件10.已知函數,將函數的圖象向左平移個單位長度后,所得到的圖象關于軸對稱,則的最小值是()A. B. C. D.11.已知雙曲線的一個焦點為,點是的一條漸近線上關于原點對稱的兩點,以為直徑的圓過且交的左支于兩點,若,的面積為8,則的漸近線方程為()A. B.C. D.12.已知是虛數單位,則復數()A. B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.設為數列的前項和,若,,且,,則________.14.在三棱錐中,,三角形為等邊三角形,二面角的余弦值為,當三棱錐的體積最大值為時,三棱錐的外接球的表面積為______.15.某中學數學競賽培訓班共有10人,分為甲、乙兩個小組,在一次階段測試中兩個小組成績的莖葉圖如圖所示,若甲組5名同學成績的平均數為81,乙組5名同學成績的中位數為73,則x-y的值為________.16.將函數的圖象向右平移個單位長度后得到函數的圖象,則函數的最大值為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,為直線上動點,過點作拋物線:的兩條切線,,切點分別為,,為的中點.(1)證明:軸;(2)直線是否恒過定點?若是,求出這個定點的坐標;若不是,請說明理由.18.(12分)已知函數,為的導數,函數在處取得最小值.(1)求證:;(2)若時,恒成立,求的取值范圍.19.(12分)等差數列的前項和為,已知,.(Ⅰ)求數列的通項公式及前項和為;(Ⅱ)設為數列的前項的和,求證:.20.(12分)選修4-5:不等式選講已知函數.(1)設,求不等式的解集;(2)已知,且的最小值等于,求實數的值.21.(12分)如圖,平面四邊形中,,是上的一點,是的中點,以為折痕把折起,使點到達點的位置,且.(1)證明:平面平面;(2)求直線與平面所成角的正弦值.22.(10分)已知,均為正數,且.證明:(1);(2).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
作出三棱錐的實物圖,然后補成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球為同一個球,然后計算出矩形的外接圓直徑,利用公式可計算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【詳解】三棱錐的實物圖如下圖所示:將其補成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.【點睛】本題考查三棱錐外接球的表面積,解題時要結合三視圖作出三棱錐的實物圖,并分析三棱錐的結構,選擇合適的模型進行計算,考查推理能力與計算能力,屬于中等題.2、C【解析】
根據表示圓和直線與圓有公共點,得到,再利用二次函數的性質求解.【詳解】因為表示圓,所以,解得,因為直線與圓有公共點,所以圓心到直線的距離,即,解得,此時,因為,在遞增,所以的最大值.故選:C【點睛】本題主要考查圓的方程,直線與圓的位置關系以及二次函數的性質,還考查了運算求解的能力,屬于中檔題.3、C【解析】
設,,,,設直線的方程為:,與拋物線方程聯立,由△得,利用韋達定理結合已知條件得,,代入上式即可求出的取值范圍.【詳解】設直線的方程為:,,,,,聯立方程,消去得:,△,,且,,,線段的中點為,,,,,,,,把代入,得,,,故選:【點睛】本題主要考查了直線與拋物線的位置關系,考查了韋達定理的應用,屬于中檔題.4、D【解析】
由題意利用兩個向量坐標形式的運算法則,兩個向量平行、垂直的性質,得出結論.【詳解】∵向量(1,﹣2),(3,﹣1),∴和的坐標對應不成比例,故、不平行,故排除A;顯然,?3+2≠0,故、不垂直,故排除B;∴(﹣2,﹣1),顯然,和的坐標對應不成比例,故和不平行,故排除C;∴?()=﹣2+2=0,故⊥(),故D正確,故選:D.【點睛】本題主要考查兩個向量坐標形式的運算,兩個向量平行、垂直的性質,屬于基礎題.5、A【解析】
由題意得到關于的等式,結合對數的運算法則可得亮度的比值.【詳解】兩顆星的星等與亮度滿足,令,.故選A.【點睛】本題以天文學問題為背景,考查考生的數學應用意識?信息處理能力?閱讀理解能力以及指數對數運算.6、C【解析】
先求導得(),由于函數有兩個不同的極值點,,轉化為方程有兩個不相等的正實數根,根據,,,求出的取值范圍,而有解,通過分裂參數法和構造新函數,通過利用導數研究單調性、最值,即可得出的取值范圍.【詳解】由題可得:(),因為函數有兩個不同的極值點,,所以方程有兩個不相等的正實數根,于是有解得.若不等式有解,所以因為.設,,故在上單調遞增,故,所以,所以的取值范圍是.故選:C.【點睛】本題考查利用導數研究函數單調性、最值來求參數取值范圍,以及運用分離參數法和構造函數法,還考查分析和計算能力,有一定的難度.7、D【解析】
利用復數的運算法則即可化簡得出結果【詳解】1+i故選D【點睛】本題考查了復數代數形式的乘除運算,屬于基礎題。8、A【解析】
先利用最高點縱坐標求出A,再根據求出周期,再將代入求出φ的值.最后將代入解析式即可.【詳解】由圖象可知A=1,∵,所以T=π,∴.∴f(x)=sin(2x+φ),將代入得φ)=1,∴φ,結合0<φ,∴φ.∴.∴sin.故選:A.【點睛】本題考查三角函數的據圖求式問題以及三角函數的公式變換.據圖求式問題要注意結合五點法作圖求解.屬于中檔題.9、C【解析】
根據等比數列的性質以及充分條件和必要條件的定義進行判斷即可.【詳解】解:若{an}是等比數列,則,
若,則,即成立,
若成立,則,即,
故“”是“”的充要條件,
故選:C.【點睛】本題主要考查充分條件和必要條件的判斷,利用等比數列的通項公式是解決本題的關鍵.10、A【解析】
化簡為,求出它的圖象向左平移個單位長度后的圖象的函數表達式,利用所得到的圖象關于軸對稱列方程即可求得,問題得解?!驹斀狻亢瘮悼苫癁椋?,將函數的圖象向左平移個單位長度后,得到函數的圖象,又所得到的圖象關于軸對稱,所以,解得:,即:,又,所以.故選:A.【點睛】本題主要考查了兩角和的正弦公式及三角函數圖象的平移、性質等知識,考查轉化能力,屬于中檔題。11、B【解析】
由雙曲線的對稱性可得即,又,從而可得的漸近線方程.【詳解】設雙曲線的另一個焦點為,由雙曲線的對稱性,四邊形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的漸近線方程為.故選B【點睛】本題考查雙曲線的簡單幾何性質,考查直線與圓的位置關系,考查數形結合思想與計算能力,屬于中檔題.12、A【解析】
根據復數的基本運算求解即可.【詳解】.故選:A【點睛】本題主要考查了復數的基本運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由題可得,解得,所以,,上述兩式相減可得,即,因為,所以,即,所以數列是以為首項,為公差的等差數列,所以.14、【解析】
根據題意作出圖象,利用三垂線定理找出二面角的平面角,再設出的長,即可求出三棱錐的高,然后利用利用基本不等式即可確定三棱錐的體積最大值,從而得出各棱的長度,最后根據球的幾何性質,利用球心距,半徑,底面半徑之間的關系即可求出三棱錐的外接球的表面積.【詳解】如圖所示:過點作面,垂足為,過點作交于點,連接.則為二面角的平面角的補角,即有.∵易證面,∴,而三角形為等邊三角形,∴為的中點.設,.∴.故三棱錐的體積為當且僅當時,,即.∴三點共線.設三棱錐的外接球的球心為,半徑為.過點作于,∴四邊形為矩形.則,,,在中,,解得.三棱錐的外接球的表面積為.故答案為:.【點睛】本題主要考查三棱錐的外接球的表面積的求法,涉及二面角的運用,基本不等式的應用,以及球的幾何性質的應用,意在考查學生的直觀想象能力,數學運算能力和邏輯推理能力,屬于較難題.15、【解析】
根據莖葉圖中的數據,結合平均數與中位數的概念,求出x、y的值.【詳解】根據莖葉圖中的數據,得:甲班5名同學成績的平均數為,解得;又乙班5名同學的中位數為73,則;.故答案為:.【點睛】本題考查莖葉圖及根據莖葉圖計算中位數、平均數,考查數據分析能力,屬于簡單題.16、【解析】
由三角函數圖象相位變換后表達函數解析式,再利用三角恒等變換與輔助角公式整理的表達式,進而由三角函數值域求得最大值.【詳解】將函數的圖象向右平移個單位長度后得到函數的圖象,則所以,當函數最大,最大值為故答案為:【點睛】本題考查表示三角函數圖象平移后圖象的解析式,還考查了利用三角恒等變換化簡函數式并求最值,屬于簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)直線過定點.【解析】
(1)設出兩點的坐標,利用導數求得切線的方程,設出點坐標并代入切線的方程,同理將點坐標代入切線的方程,利用韋達定理求得線段中點的橫坐標,由此判斷出軸.(2)求得點的縱坐標,由此求得點坐標,求得直線的斜率,由此求得直線的方程,化簡后可得直線過定點.【詳解】(1)設切點,,,∴切線的斜率為,切線:,設,則有,化簡得,同理可的.∴,是方程的兩根,∴,,,∴軸.(2)∵,∴.∵,∴直線:,即,∴直線過定點.【點睛】本小題主要考查直線和拋物線的位置關系,考查直線過定點問題,考查化歸與轉化的數學思想方法,屬于中檔題.18、(1)見解析;(2).【解析】
(1)對求導,令,求導研究單調性,分析可得存在使得,即,即得證;(2)分,兩種情況討論,當時,轉化利用均值不等式即得證;當,有兩個不同的零點,,分析可得的最小值為,分,討論即得解.【詳解】(1)由題意,令,則,知為的增函數,因為,,所以,存在使得,即.所以,當時,為減函數,當時,為增函數,故當時,取得最小值,也就是取得最小值.故,于是有,即,所以有,證畢.(2)由(1)知,的最小值為,①當,即時,為的增函數,所以,,由(1)中,得,即.故滿足題意.②當,即時,有兩個不同的零點,,且,即,若時,為減函數,(*)若時,為增函數,所以的最小值為.注意到時,,且此時,(ⅰ)當時,,所以,即,又,而,所以,即.由于在下,恒有,所以.(ⅱ)當時,,所以,所以由(*)知時,為減函數,所以,不滿足時,恒成立,故舍去.故滿足條件.綜上所述:的取值范圍是.【點睛】本題考查了函數與導數綜合,考查了利用導數研究函數的最值和不等式的恒成立問題,考查了學生綜合分析,轉化劃歸,分類討論,數學運算能力,屬于較難題.19、(Ⅰ),(Ⅱ)見解析【解析】
(Ⅰ)根據等差數列公式直接計算得到答案.(Ⅱ),根據裂項求和法計算得到得到證明.【詳解】(Ⅰ)等差數列的公差為,由,得,,即,,解得,.∴,.(Ⅱ),∴,∴,即.【點睛】本題考查了等差數列的基本量的計算,裂項求和,意在考查學生對于數列公式方法的靈活運用.20、(1)(2)【解析】
(1)把f(x)去絕對值寫成分段函數的形式,分類討論,分別求得解集,綜合可得結論.(2)把f(x)去絕對值寫成分段函數,畫出f(x)的圖像,找出利用條件求得a的值.【詳解】(1)時,.當時,即為,解得.當時,,解得.當時,,解得.綜上,的解集為.(2).,由的圖象知,,.【點睛】本題主要考查含絕對值不等式的解法及含絕對值的函數的最值問題,體現了分類討論的數學思想,屬于中檔題21、(1)見解析;(2)【解析】
(1)要證平面平面,只需證平面,而,所以只需證,而由已
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇淮安2024~2025學年高二下冊6月期末調研測試數學試題含解析
- 2024~2025學年江蘇連云港東??h七年級下冊4月期中數學試題【帶答案】
- 節能環保理念在空調器中的應用考核試卷
- 制作工藝優化方法考核試卷
- 應急通信系統與應急指揮系統的結合考核試卷
- 應急資金使用監督與管理考核試卷
- 糖廠糖蜜酵母發酵技術考核試卷
- 信用卡智能客服系統開發考核試卷
- 醫療設備信托與患者權益保護考核試卷
- 2025年中國KU頻段衛星通信天線數據監測報告
- 郭秀艷-實驗心理學-練習題及答案
- 員工測試題目及答案
- 《用電飯煲蒸米飯》(教案)-2024-2025學年四年級上冊勞動魯科版
- 七年級英語下冊 Unit 1 Can you play the guitar教學設計 (新版)人教新目標版
- 腎臟內科護理疑難病例討論
- 物業電梯管理制度及規范
- 湖南省長沙市寧鄉市2025年五年級數學第二學期期末統考試題含答案
- 果蔬類營養知識培訓課件
- 內蒙古赤峰市松山區2024-2025學年九年級上學期期末化學試題(含答案)
- 2025年深圳市勞動合同保密協議官方模板
- 軟件質量保證措施及案例
評論
0/150
提交評論