山東省東明縣一中2025屆數學高一下期末教學質量檢測模擬試題含解析_第1頁
山東省東明縣一中2025屆數學高一下期末教學質量檢測模擬試題含解析_第2頁
山東省東明縣一中2025屆數學高一下期末教學質量檢測模擬試題含解析_第3頁
山東省東明縣一中2025屆數學高一下期末教學質量檢測模擬試題含解析_第4頁
山東省東明縣一中2025屆數學高一下期末教學質量檢測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

山東省東明縣一中2025屆數學高一下期末教學質量檢測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知:平面內不再同一條直線上的四點、、、滿足,若,則()A.1 B.2 C. D.2.空氣質量指數是反映空氣質量狀況的指數,指數值越小,表明空氣質量越好,其對應關系如表:指數值0~5051~100101~150151~200201~300空氣質量優良輕度污染中度污染重度污染嚴重污染如圖是某市10月1日-20日指數變化趨勢:下列敘述錯誤的是()A.這20天中指數值的中位數略高于100B.這20天中的中度污染及以上的天數占C.該市10月的前半個月的空氣質量越來越好D.總體來說,該市10月上旬的空氣質量比中旬的空氣質量好3.直線與圓相交于兩點,則弦長()A. B.C. D.4.在中,角A,B,C的對邊分別為a,b,c.若,則一定是()A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等腰或直角三角形5.在中,角,,所對的邊分別為,,,,的平分線交于點,且,則的最小值為()A.8 B.9 C.10 D.76.為了了解所加工的一批零件的長度,抽測了其中個零件的長度,在這個工作中,個零件的長度是()A.總體 B.個體 C.樣本容量 D.總體的一個樣本7.為三角形ABC的一個內角,若,則這個三角形的形狀為()A.銳角三角形 B.鈍角三角形C.等腰直角三角形 D.等腰三角形8.下列各點中,可以作為函數圖象的對稱中心的是()A. B. C. D.9.設正項等比數列的前項和為,若,,則公比()A. B. C. D.10.如果成等差數列,成等比數列,那么等于()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.三棱錐的各頂點都在球的球面上,,平面,,,球的表面積為,則的表面積為_______.12.等腰直角中,,CD是AB邊上的高,E是AC邊的中點,現將沿CD翻折成直二面角,則異面直線DE與AB所成角的大小為________.13.已知三個頂點的坐標分別為,若⊥,則的值是______.14.若等差數列的前項和,且,則______________.15.如圖,在三棱錐中,它的每個面都是全等的正三角形,是棱上的動點,設,分別記與,所成角為,,則的取值范圍為__________.16.學校為了調查學生在課外讀物方面的支出情況,抽出了一個容量為100且支出在元的樣本,其頻率分布直方圖如圖,則支出在元的同學人數為________三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.某工廠有工人1000名,其中250名工人參加過短期培訓(稱為A類工人),另外750名工人參加過長期培訓(稱為B類工人).現用分層抽樣方法(按A類,B類分二層)從該工廠的工人中共抽查100名工人,調查他們的生產能力(生產能力指一天加工的零件數)(1)A類工人中和B類工人各抽查多少工人?(2)從A類工人中抽查結果和從B類工人中的抽查結果分別如下表1和表2:表1:生產能力分組人數48x53表2:生產能力分組人數6y3618①先確定x,y,再在答題紙上完成下列頻率分布直方圖.就生產能力而言,A類工人中個體間的差異程度與B類工人中個體間的差異程度哪個更?。浚ú挥糜嬎?,可通過觀察直方圖直接回答結論)②分別估計A類工人和B類工人生產能力的平均數,并估計該工廠工人和生產能力的平均數(同一組中的數據用該區間的中點值作代表)圖1A類工人生產能力的頻率分布直方圖圖2B類工人生產能力的頻率分布直方圖18.已知,,其中.(1)求的值;(2)求的值.19.已知數列為等差數列,且.(1)求數列的通項公式;(2)求數列的前項和.20.在中,,且的邊a,b,c所對的角分別為A,B,C.(1)求的值;(2)若,試求周長的最大值.21.已知數列滿足.證明數列為等差數列;求數列的通項公式.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、D【解析】

根據向量的加法原理對已知表示式轉化為所需向量的運算對照向量的系數求解.【詳解】根據向量的加法原理得所以,,解得且故選D.【點睛】本題考查向量的線性運算,屬于基礎題.2、C【解析】

根據所給圖象,結合中位數的定義、指數與污染程度的關系以及古典概型概率公式,對四個選項逐一判斷即可.【詳解】對,因為第10天與第11天指數值都略高100,所以中位數略高于100,正確;對,中度污染及以上的有第11,13,14,15,17天,共5天占,正確;對,由圖知,前半個月中,前4天的空氣質量越來越好,后11天該市的空氣質量越來越差,錯誤;對,由圖知,10月上旬大部分指數在100以下,10月中旬大部分指數在100以上,所以正確,故選C.【點睛】與實際應用相結合的題型也是高考命題的動向,這類問題的特點是通過現實生活的事例考查書本知識,解決這類問題的關鍵是耐心讀題、仔細理解題,只有吃透題意,才能將實際問題轉化為數學模型進行解答.3、D【解析】試題分析:圓心到直線的距離為,所以弦長為.考點:直線與圓的位置關系.4、D【解析】

根據正弦定理得到,計算得到答案.【詳解】,則,即.故或,即.故選:.【點睛】本題考查了根據正弦定理判斷三角形形狀,意在考查學生的應用能力.5、B【解析】

根據三角形的面積公式,建立關于的關系式,結合基本不等式,利用1的代換,即可求解,得到答案.【詳解】由題意,因為,的平分線交于點,且,所以,整理得,得,則,當且僅當,即,所以的最小值9,故選B.【點睛】本題主要考查了基本不等式的應用,其中合理利用1的代換,結合基本不等式求解是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.6、D【解析】

根據總體與樣本中的相關概念進行判斷.【詳解】由題意可知,在這個工作中,個零件的長度是總體的一個樣本,故選D.【點睛】本題考查總體與樣本中相關概念的理解,屬于基礎題.7、B【解析】試題分析:由,兩邊平方得,即,又,則,所以為第三、四象限角或軸負半軸上的角,所以為鈍角.故正確答案為B.考點:1.三角函數的符號、平方關系;2.三角形內角.8、B【解析】

首先利用輔助角公式將函數化為,然后再采用整體代入即可求解.【詳解】由函數,所以,解得,當時,故函數圖象的對稱中心的是.故選:B【點睛】本題考查了輔助角公式以及整體代入法求三角函數的中心對稱點,需熟記三角函數的性質,屬于基礎題.9、D【解析】

根據題意,求得,結合,即可求解,得到答案.【詳解】由題意,正項等比數列滿足,,即,,所以,又由,因為,所以.故選:D.【點睛】本題主要考查了的等比數列的通項公式,以及等比數列的前n項和公式的應用,其中解答中熟記等比數列的通項公式,以及等比數列的前n項和公式,合理運算是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.10、D【解析】

因為成等差數列,所以,因為成等比數列,所以,因此.故選D二、填空題:本大題共6小題,每小題5分,共30分。11、【解析】

根據題意可證得,而,所以球心為的中點.由球的表面積為,即可求出,繼而得出的值,求出三棱錐的表面積.【詳解】如圖所示:∵,平面,∴,又,故球心為的中點.∵球的表面積為,∴,即有.∴,.∴,,,.故的表面積為.故答案為:.【點睛】本題主要考查三棱錐的表面積的求法,球的表面積公式的應用,意在考查學生的直觀想象能力和數學運算能力,屬于基礎題.12、【解析】

取的中點,連接,則與所成角即為與所成角,根據已知可得,,可以判斷三角形為等邊三角形,進而求出異面直線直線DE與AB所成角.【詳解】取的中點,連接,則,直線DE與AB所成角即為與所成角,,,,,,即三角形為等邊三角形,異面直線DE與AB所成角的大小為.故答案為:【點睛】本題考查立體幾何中的翻折問題,考查了異面直線所成的角,考查了學生的空間想象能力,屬于基礎題.13、【解析】

求出,再利用,求得.【詳解】,因為⊥,所以,解得:.【點睛】本題考查向量的坐標表示、數量積運算,要注意向量坐標與點坐標的區別.14、【解析】

設等差數列的公差為,根據題意建立和的方程組,解出這兩個量,即可求出的值.【詳解】設等差數列的公差為,由題意得,解得,因此,.故答案為:.【點睛】本題考查等差數列中項的計算,解題的關鍵就是要建立首項和公差的方程組,利用這兩個基本量來求解,考查運算求解能力,屬于基礎題.15、【解析】

作交于,連接,可得是與所成的角根據等腰三角形的性質,作交于,同理可得,根據,的關系即可得解.【詳解】解:作交于,連接,因為三棱錐中,它的每個面都是全等的正三角形,為正三角形,,,是與所成的角,根據等腰三角形的性質.作交于,同理可得,則,∵,∴,得.故答案為:【點睛】本題考查異面直線所成的角,屬于中檔題.16、30【解析】

由頻率分布直方圖求出支出在元的概率,由此能力求出支出在元的同學的人數,得到答案.【詳解】由頻率分布直方圖,可得支出在元的概率,,所以支出在元的同學的人數為人.【點睛】本題主要考查了頻率分布直方圖的應用,以及概率的計算,其中解答中熟記頻率分布直方圖的性質,合理求得相應的概率是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)25,75(2)①5,15,直方圖見解析,B類②123,133.8,131.1【解析】

(1)先計算抽樣比為,進而可得各層抽取人數(2)①類、類工人人數之比為,按此比例確定兩類工人需抽取的人數,再算出和即可.畫出頻率分布直方圖,從直方圖可以判斷:類工人中個體間的差異程度更小②取每個小矩形的橫坐標的中點乘以對應矩形的面積相加即得平均數.【詳解】(1)由已知可得:抽樣比,故類工人中應抽?。喝?,類工人中應抽取:人,(2)①由題意知,得,,得.滿足條件的頻率分布直方圖如下所示:從直方圖可以判斷:類工人中個體間的差異程度更?。?,類工人生產能力的平均數,類工人生產能力的平均數以及全工廠工人生產能力的平均數的估計值分別為123,133.8和131.1【點睛】本題考查等可能事件、相互獨立事件的概率、頻率分布直方圖的理解以及利用頻率分布直方圖求平均數等知識、考查運算能力.18、(1)(2)【解析】

(1)根據題意,由,求解,注意角的范圍,可求得值,再根據運用兩角和正切公式,即可求解;(2)由題意,配湊組合角,運用兩角差余弦公式,即可求解.【詳解】(1)∵,∴,∵,∴,∴,,(2)∵,∴,,∵,,∴,,∴.【點睛】本題考查三角恒等變換中的由弦求切、兩角和正切公式、兩角差余弦公式,考查配湊組合角,考查計算能力,屬于基礎題.19、(1);(2).【解析】試題分析:(1)由于為等差數列,根據已知條件求出的第一項和第三項求得數列的公差,即得數列的通項公式,移項可得數列的通項公式;(2)由(1)可知,通過分組求和根據等差數列和等比數列的前項和公式求得的前項和.試題解析:(1)設數列的公差為,∵,∴,∴,∴.(2)考點:等差數列的通項公式及數列求和.20、(1)(2)【解析】

(1)利用三角公式化簡得到答案.(2)利用余弦定理得到,再利用均值不等式得到,得到答案.【詳解】(1)原式

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論